MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. S32304 Stainless Steel

Both EN 1.4982 stainless steel and S32304 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is S32304 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
250
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
28
Fatigue Strength, MPa 420
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
79
Shear Strength, MPa 490
440
Tensile Strength: Ultimate (UTS), MPa 750
670
Tensile Strength: Yield (Proof), MPa 570
460

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 540
440
Maximum Temperature: Mechanical, °C 860
1050
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
14
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 4.9
2.8
Embodied Energy, MJ/kg 71
40
Embodied Water, L/kg 150
160

Common Calculations

PREN (Pitting Resistance) 19
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
170
Resilience: Unit (Modulus of Resilience), kJ/m3 830
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 3.4
4.0
Thermal Shock Resistance, points 17
18

Alloy Composition

Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0 to 0.030
Chromium (Cr), % 14 to 16
21.5 to 24.5
Copper (Cu), % 0
0.050 to 0.6
Iron (Fe), % 61.8 to 69.7
65 to 75.4
Manganese (Mn), % 5.5 to 7.0
0 to 2.5
Molybdenum (Mo), % 0.8 to 1.2
0.050 to 0.6
Nickel (Ni), % 9.0 to 11
3.0 to 5.5
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.1
0.050 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0.15 to 0.4
0