MakeItFrom.com
Menu (ESC)

EN 1.4982 Stainless Steel vs. S32803 Stainless Steel

Both EN 1.4982 stainless steel and S32803 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4982 stainless steel and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
210
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 28
18
Fatigue Strength, MPa 420
350
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
81
Shear Strength, MPa 490
420
Tensile Strength: Ultimate (UTS), MPa 750
680
Tensile Strength: Yield (Proof), MPa 570
560

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 540
510
Maximum Temperature: Mechanical, °C 860
1100
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
16
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 22
19
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 4.9
3.7
Embodied Energy, MJ/kg 71
53
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 19
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 830
760
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
25
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 3.4
4.4
Thermal Shock Resistance, points 17
22

Alloy Composition

Boron (B), % 0.0030 to 0.0090
0
Carbon (C), % 0.070 to 0.13
0 to 0.015
Chromium (Cr), % 14 to 16
28 to 29
Iron (Fe), % 61.8 to 69.7
62.9 to 67.1
Manganese (Mn), % 5.5 to 7.0
0 to 0.5
Molybdenum (Mo), % 0.8 to 1.2
1.8 to 2.5
Nickel (Ni), % 9.0 to 11
3.0 to 4.0
Niobium (Nb), % 0.75 to 1.3
0.15 to 0.5
Nitrogen (N), % 0 to 0.1
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.0035
Vanadium (V), % 0.15 to 0.4
0