MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. AWS ER80S-B8

Both EN 1.4986 stainless steel and AWS ER80S-B8 are iron alloys. They have 74% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is AWS ER80S-B8.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 18
19
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Tensile Strength: Ultimate (UTS), MPa 750
630
Tensile Strength: Yield (Proof), MPa 560
530

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
6.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
2.0
Embodied Energy, MJ/kg 67
28
Embodied Water, L/kg 150
89

Common Calculations

PREN (Pitting Resistance) 22
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 790
720
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
22
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 16
17

Alloy Composition

Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0 to 0.1
Chromium (Cr), % 15.5 to 17.5
8.0 to 10.5
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 59.4 to 66.6
85.6 to 90.8
Manganese (Mn), % 0 to 1.5
0.4 to 0.7
Molybdenum (Mo), % 1.6 to 2.0
0.8 to 1.2
Nickel (Ni), % 15.5 to 17.5
0 to 0.5
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0.3 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Residuals, % 0
0 to 0.5