MakeItFrom.com
Menu (ESC)

EN 1.5501 Steel vs. Grade 5 Titanium

EN 1.5501 steel belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.5501 steel and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 17
8.6 to 11
Fatigue Strength, MPa 180 to 270
530 to 630
Poisson's Ratio 0.29
0.32
Reduction in Area, % 63 to 73
21 to 25
Shear Modulus, GPa 73
40
Shear Strength, MPa 270 to 310
600 to 710
Tensile Strength: Ultimate (UTS), MPa 390 to 510
1000 to 1190
Tensile Strength: Yield (Proof), MPa 260 to 420
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
330
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1650
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 52
6.8
Thermal Expansion, µm/m-K 13
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 1.4
38
Embodied Energy, MJ/kg 18
610
Embodied Water, L/kg 46
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 83
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 460
3980 to 5880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 14 to 18
62 to 75
Strength to Weight: Bending, points 15 to 18
50 to 56
Thermal Diffusivity, mm2/s 14
2.7
Thermal Shock Resistance, points 11 to 15
76 to 91

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.13 to 0.16
0 to 0.080
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.4 to 99.269
0 to 0.4
Manganese (Mn), % 0.6 to 0.8
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4