MakeItFrom.com
Menu (ESC)

EN 1.5535 Steel vs. Grade 31 Titanium

EN 1.5535 steel belongs to the iron alloys classification, while grade 31 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.5535 steel and the bottom bar is grade 31 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 22
20
Fatigue Strength, MPa 210 to 320
300
Poisson's Ratio 0.29
0.32
Reduction in Area, % 62 to 72
34
Shear Modulus, GPa 73
41
Shear Strength, MPa 320 to 370
320
Tensile Strength: Ultimate (UTS), MPa 450 to 1490
510
Tensile Strength: Yield (Proof), MPa 300 to 500
450

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 50
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
36
Embodied Energy, MJ/kg 19
600
Embodied Water, L/kg 48
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45 to 250
99
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 680
940
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 16 to 53
32
Strength to Weight: Bending, points 17 to 37
32
Thermal Diffusivity, mm2/s 13
8.5
Thermal Shock Resistance, points 13 to 44
39

Alloy Composition

Boron (B), % 0.00080 to 0.0050
0
Carbon (C), % 0.2 to 0.25
0 to 0.080
Chromium (Cr), % 0 to 0.3
0
Cobalt (Co), % 0
0.2 to 0.8
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97.6 to 98.9
0 to 0.3
Manganese (Mn), % 0.9 to 1.2
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
97.9 to 99.76
Residuals, % 0
0 to 0.4