MakeItFrom.com
Menu (ESC)

EN 1.6220 Steel vs. C12500 Copper

EN 1.6220 steel belongs to the iron alloys classification, while C12500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.6220 steel and the bottom bar is C12500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23 to 25
1.5 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 550 to 580
220 to 420
Tensile Strength: Yield (Proof), MPa 340
75 to 390

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 52
350
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
92
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
93

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.5
2.6
Embodied Energy, MJ/kg 19
41
Embodied Water, L/kg 48
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
5.6 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 310
24 to 660
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19 to 20
6.9 to 13
Strength to Weight: Bending, points 19 to 20
9.1 to 14
Thermal Diffusivity, mm2/s 14
100
Thermal Shock Resistance, points 16 to 17
7.8 to 15

Alloy Composition

Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Carbon (C), % 0.17 to 0.23
0
Copper (Cu), % 0
99.88 to 100
Iron (Fe), % 96.7 to 98.8
0
Lead (Pb), % 0
0 to 0.0040
Manganese (Mn), % 1.0 to 1.6
0
Nickel (Ni), % 0 to 0.8
0 to 0.050
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tellurium (Te), % 0
0 to 0.025
Residuals, % 0
0 to 0.3