EN 1.6554 Steel vs. C22000 Bronze
EN 1.6554 steel belongs to the iron alloys classification, while C22000 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is EN 1.6554 steel and the bottom bar is C22000 bronze.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 17 to 21 | |
1.9 to 45 |
Poisson's Ratio | 0.29 | |
0.33 |
Shear Modulus, GPa | 73 | |
42 |
Tensile Strength: Ultimate (UTS), MPa | 780 to 930 | |
260 to 520 |
Tensile Strength: Yield (Proof), MPa | 550 to 790 | |
69 to 500 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
200 |
Maximum Temperature: Mechanical, °C | 420 | |
180 |
Melting Completion (Liquidus), °C | 1460 | |
1040 |
Melting Onset (Solidus), °C | 1420 | |
1020 |
Specific Heat Capacity, J/kg-K | 470 | |
390 |
Thermal Conductivity, W/m-K | 40 | |
190 |
Thermal Expansion, µm/m-K | 13 | |
18 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.6 | |
44 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.7 | |
45 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 3.4 | |
29 |
Density, g/cm3 | 7.9 | |
8.7 |
Embodied Carbon, kg CO2/kg material | 1.7 | |
2.6 |
Embodied Energy, MJ/kg | 22 | |
42 |
Embodied Water, L/kg | 53 | |
310 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 140 to 150 | |
3.7 to 230 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 810 to 1650 | |
21 to 1110 |
Stiffness to Weight: Axial, points | 13 | |
7.2 |
Stiffness to Weight: Bending, points | 24 | |
18 |
Strength to Weight: Axial, points | 27 to 33 | |
8.1 to 17 |
Strength to Weight: Bending, points | 24 to 27 | |
10 to 17 |
Thermal Diffusivity, mm2/s | 11 | |
56 |
Thermal Shock Resistance, points | 23 to 27 | |
8.8 to 18 |
Alloy Composition
Carbon (C), % | 0.23 to 0.28 | |
0 |
Chromium (Cr), % | 0.7 to 0.9 | |
0 |
Copper (Cu), % | 0 to 0.3 | |
89 to 91 |
Iron (Fe), % | 94.6 to 97.3 | |
0 to 0.050 |
Lead (Pb), % | 0 | |
0 to 0.050 |
Manganese (Mn), % | 0.6 to 0.9 | |
0 |
Molybdenum (Mo), % | 0.2 to 0.3 | |
0 |
Nickel (Ni), % | 1.0 to 2.0 | |
0 |
Phosphorus (P), % | 0 to 0.030 | |
0 |
Silicon (Si), % | 0 to 0.6 | |
0 |
Sulfur (S), % | 0 to 0.025 | |
0 |
Vanadium (V), % | 0 to 0.030 | |
0 |
Zinc (Zn), % | 0 | |
8.7 to 11 |
Residuals, % | 0 | |
0 to 0.2 |