MakeItFrom.com
Menu (ESC)

EN 1.6579 Steel vs. ASTM A182 Grade F36

Both EN 1.6579 steel and ASTM A182 grade F36 are iron alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6579 steel and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260 to 290
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 14
17
Fatigue Strength, MPa 380 to 570
330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 850 to 980
710
Tensile Strength: Yield (Proof), MPa 600 to 910
490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 440
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
3.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.7
Embodied Energy, MJ/kg 22
22
Embodied Water, L/kg 56
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 950 to 2210
650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 30 to 35
25
Strength to Weight: Bending, points 25 to 28
22
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 25 to 29
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0.32 to 0.38
0.1 to 0.17
Chromium (Cr), % 1.4 to 1.7
0 to 0.3
Copper (Cu), % 0
0.5 to 0.8
Iron (Fe), % 94.2 to 96.1
95 to 97.1
Manganese (Mn), % 0.6 to 1.0
0.8 to 1.2
Molybdenum (Mo), % 0.15 to 0.35
0.25 to 0.5
Nickel (Ni), % 1.4 to 1.7
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.6
0.25 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Vanadium (V), % 0
0 to 0.020