MakeItFrom.com
Menu (ESC)

EN 1.6920 Steel vs. EN 1.4408 Stainless Steel

Both EN 1.6920 steel and EN 1.4408 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.6920 steel and the bottom bar is EN 1.4408 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
150
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
34
Fatigue Strength, MPa 290
170
Impact Strength: V-Notched Charpy, J 45
67
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Tensile Strength: Ultimate (UTS), MPa 640
510
Tensile Strength: Yield (Proof), MPa 420
210

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 420
990
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
18
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.7
Embodied Energy, MJ/kg 23
52
Embodied Water, L/kg 52
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 470
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 10
3.9
Thermal Shock Resistance, points 19
11

Alloy Composition

Carbon (C), % 0 to 0.17
0 to 0.070
Chromium (Cr), % 0.5 to 1.0
18 to 20
Iron (Fe), % 95.7 to 98
62.4 to 71
Manganese (Mn), % 1.0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0.2 to 0.35
2.0 to 2.5
Nickel (Ni), % 0.3 to 0.7
9.0 to 12
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Vanadium (V), % 0.050 to 0.1
0