MakeItFrom.com
Menu (ESC)

EN 1.6956 Steel vs. C41300 Brass

EN 1.6956 steel belongs to the iron alloys classification, while C41300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.6956 steel and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 9.6
2.0 to 44
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 730
230 to 370
Tensile Strength: Ultimate (UTS), MPa 1230
300 to 630
Tensile Strength: Yield (Proof), MPa 1120
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 440
180
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 46
130
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
30
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
31

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
29
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 2.2
2.7
Embodied Energy, MJ/kg 31
44
Embodied Water, L/kg 60
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3320
69 to 1440
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 43
9.6 to 20
Strength to Weight: Bending, points 32
11 to 19
Thermal Diffusivity, mm2/s 12
40
Thermal Shock Resistance, points 36
11 to 22

Alloy Composition

Carbon (C), % 0.28 to 0.38
0
Chromium (Cr), % 1.0 to 1.7
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 92.4 to 95.3
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.15 to 0.4
0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 2.9 to 3.8
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0.7 to 1.3
Vanadium (V), % 0.080 to 0.25
0
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5