MakeItFrom.com
Menu (ESC)

EN 1.6956 Steel vs. C43400 Brass

EN 1.6956 steel belongs to the iron alloys classification, while C43400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.6956 steel and the bottom bar is C43400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 9.6
3.0 to 49
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 730
250 to 390
Tensile Strength: Ultimate (UTS), MPa 1230
310 to 690
Tensile Strength: Yield (Proof), MPa 1120
110 to 560

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 440
170
Melting Completion (Liquidus), °C 1460
1020
Melting Onset (Solidus), °C 1420
990
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 46
140
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
31
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
32

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
28
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 2.2
2.7
Embodied Energy, MJ/kg 31
44
Embodied Water, L/kg 60
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 3320
57 to 1420
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 43
10 to 22
Strength to Weight: Bending, points 32
12 to 20
Thermal Diffusivity, mm2/s 12
41
Thermal Shock Resistance, points 36
11 to 24

Alloy Composition

Carbon (C), % 0.28 to 0.38
0
Chromium (Cr), % 1.0 to 1.7
0
Copper (Cu), % 0
84 to 87
Iron (Fe), % 92.4 to 95.3
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.15 to 0.4
0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 2.9 to 3.8
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0.4 to 1.0
Vanadium (V), % 0.080 to 0.25
0
Zinc (Zn), % 0
11.4 to 15.6
Residuals, % 0
0 to 0.5