MakeItFrom.com
Menu (ESC)

EN 1.7230 Steel vs. EN 1.0345 Steel

Both EN 1.7230 steel and EN 1.0345 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7230 steel and the bottom bar is EN 1.0345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 270
120
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 12
27
Fatigue Strength, MPa 320 to 460
170
Impact Strength: V-Notched Charpy, J 29 to 30
44
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 720 to 910
420
Tensile Strength: Yield (Proof), MPa 510 to 740
230

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 44
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
2.1
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
1.5
Embodied Energy, MJ/kg 20
19
Embodied Water, L/kg 51
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79 to 97
96
Resilience: Unit (Modulus of Resilience), kJ/m3 700 to 1460
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26 to 32
15
Strength to Weight: Bending, points 23 to 27
16
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 21 to 27
13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0.3 to 0.37
0 to 0.16
Chromium (Cr), % 0.8 to 1.2
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 96.7 to 98.3
97.2 to 99.38
Manganese (Mn), % 0.5 to 0.8
0.6 to 1.2
Molybdenum (Mo), % 0.15 to 0.3
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.020
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.020