MakeItFrom.com
Menu (ESC)

EN 1.7233 Steel vs. 7116 Aluminum

EN 1.7233 steel belongs to the iron alloys classification, while 7116 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7233 steel and the bottom bar is 7116 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 18 to 23
7.8
Fatigue Strength, MPa 270 to 530
160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 450 to 590
220
Tensile Strength: Ultimate (UTS), MPa 700 to 960
370
Tensile Strength: Yield (Proof), MPa 380 to 780
330

Thermal Properties

Latent Heat of Fusion, J/g 250
380
Maximum Temperature: Mechanical, °C 430
170
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
520
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 39
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
46
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 1.6
8.2
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 53
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
28
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1630
790
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 25 to 34
35
Strength to Weight: Bending, points 22 to 28
39
Thermal Diffusivity, mm2/s 11
58
Thermal Shock Resistance, points 21 to 28
16

Alloy Composition

Aluminum (Al), % 0
91.5 to 94.5
Carbon (C), % 0.39 to 0.45
0
Chromium (Cr), % 1.2 to 1.5
0
Copper (Cu), % 0
0.5 to 1.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 96.2 to 97.5
0 to 0.3
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0.4 to 0.7
0 to 0.050
Molybdenum (Mo), % 0.5 to 0.7
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0 to 0.15
Sulfur (S), % 0 to 0.035
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15