EN 1.7380 Steel vs. Grade 25 Titanium
EN 1.7380 steel belongs to the iron alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is grade 25 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 19 to 20 | |
11 |
Fatigue Strength, MPa | 200 to 230 | |
550 |
Poisson's Ratio | 0.29 | |
0.32 |
Shear Modulus, GPa | 74 | |
40 |
Shear Strength, MPa | 330 to 350 | |
600 |
Tensile Strength: Ultimate (UTS), MPa | 540 to 550 | |
1000 |
Tensile Strength: Yield (Proof), MPa | 290 to 330 | |
940 |
Thermal Properties
Latent Heat of Fusion, J/g | 260 | |
410 |
Maximum Temperature: Mechanical, °C | 460 | |
340 |
Melting Completion (Liquidus), °C | 1470 | |
1610 |
Melting Onset (Solidus), °C | 1430 | |
1560 |
Specific Heat Capacity, J/kg-K | 470 | |
560 |
Thermal Conductivity, W/m-K | 39 | |
7.1 |
Thermal Expansion, µm/m-K | 13 | |
9.6 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.6 | |
1.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.7 | |
2.0 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.9 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 1.8 | |
43 |
Embodied Energy, MJ/kg | 23 | |
700 |
Embodied Water, L/kg | 59 | |
320 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 87 to 98 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 230 to 280 | |
4220 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 19 to 20 | |
62 |
Strength to Weight: Bending, points | 19 | |
50 |
Thermal Diffusivity, mm2/s | 11 | |
2.8 |
Thermal Shock Resistance, points | 15 to 16 | |
71 |
Alloy Composition
Aluminum (Al), % | 0 | |
5.5 to 6.8 |
Carbon (C), % | 0.080 to 0.14 | |
0 to 0.080 |
Chromium (Cr), % | 2.0 to 2.5 | |
0 |
Copper (Cu), % | 0 to 0.3 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.013 |
Iron (Fe), % | 94.6 to 96.6 | |
0 to 0.4 |
Manganese (Mn), % | 0.4 to 0.8 | |
0 |
Molybdenum (Mo), % | 0.9 to 1.1 | |
0 |
Nickel (Ni), % | 0 | |
0.3 to 0.8 |
Nitrogen (N), % | 0 to 0.012 | |
0 to 0.050 |
Oxygen (O), % | 0 | |
0 to 0.2 |
Palladium (Pd), % | 0 | |
0.040 to 0.080 |
Phosphorus (P), % | 0 to 0.020 | |
0 |
Silicon (Si), % | 0 to 0.5 | |
0 |
Sulfur (S), % | 0 to 0.010 | |
0 |
Titanium (Ti), % | 0 | |
86.7 to 90.6 |
Vanadium (V), % | 0 | |
3.5 to 4.5 |
Residuals, % | 0 | |
0 to 0.4 |