MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. EN 1.8936 Steel

Both EN 1.7386 steel and EN 1.8936 steel are iron alloys. They have 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is EN 1.8936 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 200
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18 to 21
20
Fatigue Strength, MPa 170 to 290
250
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 340 to 410
370
Tensile Strength: Ultimate (UTS), MPa 550 to 670
600
Tensile Strength: Yield (Proof), MPa 240 to 440
370

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.0
1.7
Embodied Energy, MJ/kg 28
24
Embodied Water, L/kg 88
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20 to 24
21
Strength to Weight: Bending, points 19 to 22
20
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 15 to 18
17

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.060
Carbon (C), % 0.080 to 0.15
0 to 0.2
Chromium (Cr), % 8.0 to 10
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 86.8 to 90.5
95.5 to 98.9
Manganese (Mn), % 0.3 to 0.6
1.0 to 1.7
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.1
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.25 to 1.0
0.1 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.015
Vanadium (V), % 0
0 to 0.2