MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. ASTM A182 Grade F23

Both EN 1.7703 steel and ASTM A182 grade F23 are iron alloys. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is ASTM A182 grade F23.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
22
Fatigue Strength, MPa 320 to 340
320
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
74
Shear Strength, MPa 420 to 430
360
Tensile Strength: Ultimate (UTS), MPa 670 to 690
570
Tensile Strength: Yield (Proof), MPa 460 to 500
460

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 460
450
Melting Completion (Liquidus), °C 1470
1500
Melting Onset (Solidus), °C 1430
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
41
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
7.0
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.5
2.5
Embodied Energy, MJ/kg 35
36
Embodied Water, L/kg 61
59

Common Calculations

PREN (Pitting Resistance) 5.6
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 19 to 20
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.11 to 0.15
0.040 to 0.1
Chromium (Cr), % 2.0 to 2.5
1.9 to 2.6
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 94.6 to 96.4
93.2 to 96.2
Manganese (Mn), % 0.3 to 0.6
0.1 to 0.6
Molybdenum (Mo), % 0.9 to 1.1
0.050 to 0.3
Nickel (Ni), % 0 to 0.25
0 to 0.4
Niobium (Nb), % 0 to 0.070
0.020 to 0.080
Nitrogen (N), % 0 to 0.012
0 to 0.015
Phosphorus (P), % 0 to 0.015
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.010
Titanium (Ti), % 0 to 0.030
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0.25 to 0.35
0.2 to 0.3