MakeItFrom.com
Menu (ESC)

EN 1.7706 Steel vs. C11400 Copper

EN 1.7706 steel belongs to the iron alloys classification, while C11400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.7706 steel and the bottom bar is C11400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
2.8 to 51
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 690
220 to 400
Tensile Strength: Yield (Proof), MPa 500
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 440
200
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
100

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
32
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 2.3
2.6
Embodied Energy, MJ/kg 32
42
Embodied Water, L/kg 57
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 670
24 to 680
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24
6.8 to 12
Strength to Weight: Bending, points 22
9.1 to 14
Thermal Diffusivity, mm2/s 11
110
Thermal Shock Resistance, points 20
7.8 to 14

Alloy Composition

Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 1.2 to 1.5
0
Copper (Cu), % 0 to 0.3
99.84 to 99.966
Iron (Fe), % 94.7 to 97.1
0
Manganese (Mn), % 0.5 to 0.9
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.6
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.2 to 0.3
0
Residuals, % 0
0 to 0.1