EN 1.7725 Steel vs. Grade 9 Titanium
EN 1.7725 steel belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is EN 1.7725 steel and the bottom bar is grade 9 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 14 | |
11 to 17 |
Fatigue Strength, MPa | 390 to 550 | |
330 to 480 |
Poisson's Ratio | 0.29 | |
0.32 |
Shear Modulus, GPa | 73 | |
40 |
Tensile Strength: Ultimate (UTS), MPa | 830 to 1000 | |
700 to 960 |
Tensile Strength: Yield (Proof), MPa | 610 to 860 | |
540 to 830 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
410 |
Maximum Temperature: Mechanical, °C | 440 | |
330 |
Melting Completion (Liquidus), °C | 1460 | |
1640 |
Melting Onset (Solidus), °C | 1420 | |
1590 |
Specific Heat Capacity, J/kg-K | 470 | |
550 |
Thermal Conductivity, W/m-K | 39 | |
8.1 |
Thermal Expansion, µm/m-K | 13 | |
9.1 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.4 | |
1.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.6 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.9 | |
37 |
Density, g/cm3 | 7.8 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 1.8 | |
36 |
Embodied Energy, MJ/kg | 24 | |
580 |
Embodied Water, L/kg | 54 | |
150 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 130 | |
89 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 980 to 1940 | |
1380 to 3220 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 29 to 35 | |
43 to 60 |
Strength to Weight: Bending, points | 25 to 28 | |
39 to 48 |
Thermal Diffusivity, mm2/s | 11 | |
3.3 |
Thermal Shock Resistance, points | 24 to 29 | |
52 to 71 |
Alloy Composition
Aluminum (Al), % | 0 | |
2.5 to 3.5 |
Carbon (C), % | 0.27 to 0.34 | |
0 to 0.080 |
Chromium (Cr), % | 1.3 to 1.7 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 95.7 to 97.5 | |
0 to 0.25 |
Manganese (Mn), % | 0.6 to 1.0 | |
0 |
Molybdenum (Mo), % | 0.3 to 0.5 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.030 |
Oxygen (O), % | 0 | |
0 to 0.15 |
Phosphorus (P), % | 0 to 0.025 | |
0 |
Silicon (Si), % | 0 to 0.6 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 |
Titanium (Ti), % | 0 | |
92.6 to 95.5 |
Vanadium (V), % | 0.050 to 0.15 | |
2.0 to 3.0 |
Residuals, % | 0 | |
0 to 0.4 |