MakeItFrom.com
Menu (ESC)

EN 1.7729 Steel vs. EN 1.0034 Steel

Both EN 1.7729 steel and EN 1.0034 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7729 steel and the bottom bar is EN 1.0034 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
97 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
9.0 to 32
Fatigue Strength, MPa 500
140 to 170
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 560
220 to 230
Tensile Strength: Ultimate (UTS), MPa 910
340 to 380
Tensile Strength: Yield (Proof), MPa 750
180 to 280

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 430
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
53
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.3
1.4
Embodied Energy, MJ/kg 49
18
Embodied Water, L/kg 59
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 1500
84 to 210
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 32
12 to 13
Strength to Weight: Bending, points 27
14 to 15
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 27
11 to 12

Alloy Composition

Aluminum (Al), % 0.015 to 0.080
0
Arsenic (As), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0.17 to 0.23
0 to 0.15
Chromium (Cr), % 0.9 to 1.2
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 94.8 to 97
98.7 to 100
Manganese (Mn), % 0.35 to 0.75
0 to 0.7
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.045
Tin (Sn), % 0 to 0.020
0
Titanium (Ti), % 0.070 to 0.15
0
Vanadium (V), % 0.6 to 0.8
0