MakeItFrom.com
Menu (ESC)

EN 1.7767 Steel vs. Grade 23 Titanium

EN 1.7767 steel belongs to the iron alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7767 steel and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
6.7 to 11
Fatigue Strength, MPa 320 to 340
470 to 500
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Shear Strength, MPa 420 to 430
540 to 570
Tensile Strength: Ultimate (UTS), MPa 670 to 690
930 to 940
Tensile Strength: Yield (Proof), MPa 460 to 500
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 480
340
Melting Completion (Liquidus), °C 1470
1610
Melting Onset (Solidus), °C 1430
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 40
7.1
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 2.4
38
Embodied Energy, MJ/kg 33
610
Embodied Water, L/kg 64
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
3430 to 3560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 24
58 to 59
Strength to Weight: Bending, points 22
48
Thermal Diffusivity, mm2/s 11
2.9
Thermal Shock Resistance, points 19 to 20
67 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0.1 to 0.15
0 to 0.080
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 93.8 to 95.8
0 to 0.25
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.030
88.1 to 91
Vanadium (V), % 0.2 to 0.3
3.5 to 4.5
Residuals, % 0
0 to 0.4