MakeItFrom.com
Menu (ESC)

EN 1.7779 Steel vs. EN 1.4028 Stainless Steel

Both EN 1.7779 steel and EN 1.4028 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7779 steel and the bottom bar is EN 1.4028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
11 to 17
Fatigue Strength, MPa 430
230 to 400
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 500
410 to 550
Tensile Strength: Ultimate (UTS), MPa 810
660 to 930
Tensile Strength: Yield (Proof), MPa 660
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 470
760
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 41
27
Embodied Water, L/kg 64
100

Common Calculations

PREN (Pitting Resistance) 5.0
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
94 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 1150
380 to 1360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
24 to 33
Strength to Weight: Bending, points 25
22 to 27
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 23
23 to 32

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.17 to 0.23
0.26 to 0.35
Chromium (Cr), % 3.0 to 3.3
12 to 14
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 93.8 to 95.4
83.1 to 87.7
Manganese (Mn), % 0.3 to 0.5
0 to 1.5
Molybdenum (Mo), % 0.5 to 0.6
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Vanadium (V), % 0.45 to 0.55
0