MakeItFrom.com
Menu (ESC)

EN 1.8201 Steel vs. 3104 Aluminum

EN 1.8201 steel belongs to the iron alloys classification, while 3104 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8201 steel and the bottom bar is 3104 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 20
1.1 to 20
Fatigue Strength, MPa 310
74 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 390
110 to 180
Tensile Strength: Ultimate (UTS), MPa 630
170 to 310
Tensile Strength: Yield (Proof), MPa 450
68 to 270

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 450
180
Melting Completion (Liquidus), °C 1500
650
Melting Onset (Solidus), °C 1450
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
41
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
130

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 2.5
8.4
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 59
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
1.6 to 60
Resilience: Unit (Modulus of Resilience), kJ/m3 530
34 to 540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22
17 to 31
Strength to Weight: Bending, points 20
25 to 37
Thermal Diffusivity, mm2/s 11
64
Thermal Shock Resistance, points 18
7.6 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.030
95.1 to 98.4
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 1.9 to 2.6
0
Copper (Cu), % 0
0.050 to 0.25
Gallium (Ga), % 0
0 to 0.050
Iron (Fe), % 93.6 to 96.2
0 to 0.8
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0.1 to 0.6
0.8 to 1.4
Molybdenum (Mo), % 0.050 to 0.3
0
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.0050 to 0.060
0 to 0.1
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0 to 0.050
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15