MakeItFrom.com
Menu (ESC)

EN 1.8523 Steel vs. AISI 436 Stainless Steel

Both EN 1.8523 steel and AISI 436 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8523 steel and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 300
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 15
25
Fatigue Strength, MPa 530
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 610
320
Tensile Strength: Ultimate (UTS), MPa 1000
500
Tensile Strength: Yield (Proof), MPa 800
270

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 480
880
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.2
2.7
Embodied Energy, MJ/kg 31
38
Embodied Water, L/kg 64
120

Common Calculations

PREN (Pitting Resistance) 6.4
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1700
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 36
18
Strength to Weight: Bending, points 28
18
Thermal Diffusivity, mm2/s 10
6.7
Thermal Shock Resistance, points 29
18

Alloy Composition

Carbon (C), % 0.35 to 0.45
0 to 0.12
Chromium (Cr), % 3.0 to 3.5
16 to 18
Iron (Fe), % 93.5 to 95.7
77.8 to 83.3
Manganese (Mn), % 0.4 to 0.7
0 to 1.0
Molybdenum (Mo), % 0.8 to 1.1
0.75 to 1.3
Niobium (Nb), % 0
0 to 0.8
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.035
0 to 0.030
Vanadium (V), % 0.15 to 0.25
0