MakeItFrom.com
Menu (ESC)

EN 1.8550 Steel vs. EN 1.4305 Stainless Steel

Both EN 1.8550 steel and EN 1.4305 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8550 steel and the bottom bar is EN 1.4305 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 300
200 to 270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11
14 to 40
Fatigue Strength, MPa 470
190 to 330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 600
420 to 550
Tensile Strength: Ultimate (UTS), MPa 1000
610 to 900
Tensile Strength: Yield (Proof), MPa 760
220 to 570

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 440
930
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
15
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.0
Embodied Energy, MJ/kg 23
42
Embodied Water, L/kg 67
140

Common Calculations

PREN (Pitting Resistance) 2.3
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 1550
120 to 830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 36
22 to 32
Strength to Weight: Bending, points 29
20 to 27
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 29
14 to 20

Alloy Composition

Aluminum (Al), % 0.8 to 1.2
0
Carbon (C), % 0.3 to 0.37
0 to 0.1
Chromium (Cr), % 1.5 to 1.8
17 to 19
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 94.4 to 96.3
66.4 to 74.9
Manganese (Mn), % 0.4 to 0.7
0 to 2.0
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0.85 to 1.2
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.035
0.15 to 0.35