MakeItFrom.com
Menu (ESC)

EN 1.8875 Steel vs. EN 1.8936 Steel

Both EN 1.8875 steel and EN 1.8936 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8875 steel and the bottom bar is EN 1.8936 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
20
Fatigue Strength, MPa 340
250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 410
370
Tensile Strength: Ultimate (UTS), MPa 660
600
Tensile Strength: Yield (Proof), MPa 490
370

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.7
Embodied Energy, MJ/kg 24
24
Embodied Water, L/kg 52
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 650
370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.2
Chromium (Cr), % 0 to 1.0
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 93.6 to 100
95.5 to 98.9
Manganese (Mn), % 0 to 1.7
1.0 to 1.7
Molybdenum (Mo), % 0 to 0.7
0 to 0.1
Nickel (Ni), % 0 to 1.5
0 to 1.0
Niobium (Nb), % 0 to 0.050
0 to 0.050
Nitrogen (N), % 0 to 0.015
0 to 0.020
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.6
0.1 to 0.6
Sulfur (S), % 0 to 0.0080
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0 to 0.2
Zirconium (Zr), % 0 to 0.15
0