MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. 2014A Aluminum

EN 1.8881 steel belongs to the iron alloys classification, while 2014A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is 2014A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 16
6.2 to 16
Fatigue Strength, MPa 460
93 to 150
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 510
130 to 290
Tensile Strength: Ultimate (UTS), MPa 830
210 to 490
Tensile Strength: Yield (Proof), MPa 710
110 to 430

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 420
210
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 40
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
37
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.9
8.1
Embodied Energy, MJ/kg 26
150
Embodied Water, L/kg 54
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
85 to 1300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 29
19 to 45
Strength to Weight: Bending, points 25
26 to 46
Thermal Diffusivity, mm2/s 11
55
Thermal Shock Resistance, points 24
9.0 to 22

Alloy Composition

Aluminum (Al), % 0
90.8 to 95
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 1.5
0 to 0.1
Copper (Cu), % 0 to 0.3
3.9 to 5.0
Iron (Fe), % 91.9 to 100
0 to 0.5
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 1.7
0.4 to 1.2
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
0 to 0.1
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.8
0.5 to 0.9
Sulfur (S), % 0 to 0.0080
0
Titanium (Ti), % 0 to 0.050
0 to 0.15
Vanadium (V), % 0 to 0.12
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0 to 0.15
0 to 0.2
Residuals, % 0
0 to 0.15