MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. 390.0 Aluminum

EN 1.8881 steel belongs to the iron alloys classification, while 390.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is 390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
120
Elastic (Young's, Tensile) Modulus, GPa 190
75
Elongation at Break, % 16
1.0
Fatigue Strength, MPa 460
76 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
28
Tensile Strength: Ultimate (UTS), MPa 830
280 to 300
Tensile Strength: Yield (Proof), MPa 710
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 260
640
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
560
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 40
130
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
24 to 25
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
79 to 83

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
11
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.9
7.3
Embodied Energy, MJ/kg 26
130
Embodied Water, L/kg 54
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
2.7 to 2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
380 to 470
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 29
28 to 30
Strength to Weight: Bending, points 25
35 to 36
Thermal Diffusivity, mm2/s 11
56
Thermal Shock Resistance, points 24
14 to 15

Alloy Composition

Aluminum (Al), % 0
74.5 to 79.6
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 1.5
0
Copper (Cu), % 0 to 0.3
4.0 to 5.0
Iron (Fe), % 91.9 to 100
0 to 1.3
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 1.7
0 to 0.1
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
0
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.8
16 to 18
Sulfur (S), % 0 to 0.0080
0
Titanium (Ti), % 0 to 0.050
0 to 0.2
Vanadium (V), % 0 to 0.12
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.2