MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. ACI-ASTM CF3 Steel

Both EN 1.8881 steel and ACI-ASTM CF3 steel are iron alloys. They have 72% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is ACI-ASTM CF3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
140
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
60
Fatigue Strength, MPa 460
270
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 830
510
Tensile Strength: Yield (Proof), MPa 710
250

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 420
960
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
3.2
Embodied Energy, MJ/kg 26
45
Embodied Water, L/kg 54
150

Common Calculations

PREN (Pitting Resistance) 2.0
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
250
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
18
Strength to Weight: Bending, points 25
18
Thermal Diffusivity, mm2/s 11
4.3
Thermal Shock Resistance, points 24
11

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 1.5
17 to 21
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
62.9 to 75
Manganese (Mn), % 0 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.7
0 to 0.5
Nickel (Ni), % 0 to 2.5
8.0 to 12
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 2.0
Sulfur (S), % 0 to 0.0080
0 to 0.040
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0