MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. AISI 431 Stainless Steel

Both EN 1.8881 steel and AISI 431 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
15 to 17
Fatigue Strength, MPa 460
430 to 610
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 510
550 to 840
Tensile Strength: Ultimate (UTS), MPa 830
890 to 1380
Tensile Strength: Yield (Proof), MPa 710
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 420
850
Melting Completion (Liquidus), °C 1460
1510
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
26
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
9.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.9
2.2
Embodied Energy, MJ/kg 26
31
Embodied Water, L/kg 54
120

Common Calculations

PREN (Pitting Resistance) 2.0
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
1270 to 2770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
32 to 50
Strength to Weight: Bending, points 25
27 to 36
Thermal Diffusivity, mm2/s 11
7.0
Thermal Shock Resistance, points 24
28 to 43

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.2
Chromium (Cr), % 0 to 1.5
15 to 17
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
78.2 to 83.8
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
1.3 to 2.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0080
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0