MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. EN 1.0214 Steel

Both EN 1.8881 steel and EN 1.0214 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is EN 1.0214 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
97 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
12 to 31
Fatigue Strength, MPa 460
160 to 250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 510
250 to 290
Tensile Strength: Ultimate (UTS), MPa 830
330 to 460
Tensile Strength: Yield (Proof), MPa 710
210 to 360

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
53
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
1.4
Embodied Energy, MJ/kg 26
18
Embodied Water, L/kg 54
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
34 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
120 to 340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
12 to 16
Strength to Weight: Bending, points 25
14 to 17
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 24
11 to 14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0.080 to 0.12
Chromium (Cr), % 0 to 1.5
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
99.17 to 99.6
Manganese (Mn), % 0 to 1.7
0.3 to 0.5
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
0
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.0080
0 to 0.025
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0