MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. EN 1.1221 Steel

Both EN 1.8881 steel and EN 1.1221 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is EN 1.1221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
210 to 250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
10 to 21
Fatigue Strength, MPa 460
240 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Shear Strength, MPa 510
450 to 520
Tensile Strength: Ultimate (UTS), MPa 830
730 to 870
Tensile Strength: Yield (Proof), MPa 710
390 to 550

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
48
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.5
Embodied Energy, MJ/kg 26
19
Embodied Water, L/kg 54
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
67 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
410 to 800
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
26 to 31
Strength to Weight: Bending, points 25
23 to 26
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 24
23 to 28

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0.57 to 0.65
Chromium (Cr), % 0 to 1.5
0 to 0.4
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
97.1 to 98.8
Manganese (Mn), % 0 to 1.7
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.7
0 to 0.1
Nickel (Ni), % 0 to 2.5
0 to 0.4
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.0080
0 to 0.035
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0