MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. EN 1.4869 Casting Alloy

EN 1.8881 steel belongs to the iron alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. They have a modest 21% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 16
5.7
Fatigue Strength, MPa 460
130
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
80
Tensile Strength: Ultimate (UTS), MPa 830
540
Tensile Strength: Yield (Proof), MPa 710
310

Thermal Properties

Latent Heat of Fusion, J/g 260
330
Maximum Temperature: Mechanical, °C 420
1200
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 40
10
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
70
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.9
7.7
Embodied Energy, MJ/kg 26
110
Embodied Water, L/kg 54
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
26
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 29
18
Strength to Weight: Bending, points 25
17
Thermal Diffusivity, mm2/s 11
2.6
Thermal Shock Resistance, points 24
14

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0.45 to 0.55
Chromium (Cr), % 0 to 1.5
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
11.4 to 23.6
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
33 to 37
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.8
1.0 to 2.0
Sulfur (S), % 0 to 0.0080
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
4.0 to 6.0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0