MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. N08020 Stainless Steel

Both EN 1.8881 steel and N08020 stainless steel are iron alloys. They have 41% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
15 to 34
Fatigue Strength, MPa 460
210 to 240
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 510
380 to 410
Tensile Strength: Ultimate (UTS), MPa 830
610 to 620
Tensile Strength: Yield (Proof), MPa 710
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 420
1100
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
38
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.9
6.6
Embodied Energy, MJ/kg 26
92
Embodied Water, L/kg 54
220

Common Calculations

PREN (Pitting Resistance) 2.0
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
180 to 440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
21
Strength to Weight: Bending, points 25
20
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 24
15

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.070
Chromium (Cr), % 0 to 1.5
19 to 21
Copper (Cu), % 0 to 0.3
3.0 to 4.0
Iron (Fe), % 91.9 to 100
29.9 to 44
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.7
2.0 to 3.0
Nickel (Ni), % 0 to 2.5
32 to 38
Niobium (Nb), % 0 to 0.060
0 to 1.0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0080
0 to 0.035
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0