MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. S41003 Stainless Steel

Both EN 1.8881 steel and S41003 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
21
Fatigue Strength, MPa 460
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 510
320
Tensile Strength: Ultimate (UTS), MPa 830
520
Tensile Strength: Yield (Proof), MPa 710
310

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 420
720
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
27
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.9
Embodied Energy, MJ/kg 26
27
Embodied Water, L/kg 54
97

Common Calculations

PREN (Pitting Resistance) 2.0
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
92
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
19
Strength to Weight: Bending, points 25
18
Thermal Diffusivity, mm2/s 11
7.2
Thermal Shock Resistance, points 24
19

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 1.5
10.5 to 12.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
83.4 to 89.5
Manganese (Mn), % 0 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
0 to 1.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0 to 0.030
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0080
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0