MakeItFrom.com
Menu (ESC)

EN 1.8888 Steel vs. EN 1.4563 Stainless Steel

Both EN 1.8888 steel and EN 1.4563 stainless steel are iron alloys. They have a modest 40% of their average alloy composition in common, which, by itself, doesn't mean much. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8888 steel and the bottom bar is EN 1.4563 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
200
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
40
Fatigue Strength, MPa 470
210
Impact Strength: V-Notched Charpy, J 110
91
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
80
Shear Strength, MPa 510
420
Tensile Strength: Ultimate (UTS), MPa 830
620
Tensile Strength: Yield (Proof), MPa 720
250

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 420
1100
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
36
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.9
6.3
Embodied Energy, MJ/kg 26
87
Embodied Water, L/kg 54
240

Common Calculations

PREN (Pitting Resistance) 2.0
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
200
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
21
Strength to Weight: Bending, points 25
20
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 24
13

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.020
Chromium (Cr), % 0 to 1.5
26 to 28
Copper (Cu), % 0 to 0.3
0.7 to 1.5
Iron (Fe), % 91.9 to 100
31.6 to 40.3
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.7
3.0 to 4.0
Nickel (Ni), % 0 to 2.5
30 to 32
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 0.7
Sulfur (S), % 0 to 0.0050
0 to 0.010
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0