MakeItFrom.com
Menu (ESC)

EN 1.8902 Steel vs. SAE-AISI P2 Steel

Both EN 1.8902 steel and SAE-AISI P2 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.8902 steel and the bottom bar is SAE-AISI P2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 600
330 to 1980

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 44
46
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
2.7
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
1.5
Embodied Energy, MJ/kg 24
20
Embodied Water, L/kg 51
51

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
12 to 70
Strength to Weight: Bending, points 20
14 to 45
Thermal Diffusivity, mm2/s 12
12
Thermal Shock Resistance, points 18
11 to 65

Alloy Composition

Aluminum (Al), % 0 to 0.015
0
Carbon (C), % 0 to 0.22
0 to 0.1
Chromium (Cr), % 0 to 0.35
0.75 to 1.3
Copper (Cu), % 0 to 0.6
0 to 0.25
Iron (Fe), % 95 to 99.05
96.6 to 98.8
Manganese (Mn), % 1.0 to 1.8
0.1 to 0.4
Molybdenum (Mo), % 0 to 0.13
0.15 to 0.4
Nickel (Ni), % 0 to 0.85
0.1 to 0.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.027
0
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 0.65
0.1 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.22
0