MakeItFrom.com
Menu (ESC)

EN 1.8903 Steel vs. A201.0 Aluminum

EN 1.8903 steel belongs to the iron alloys classification, while A201.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8903 steel and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 19
4.7
Fatigue Strength, MPa 330
97
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 630
480
Tensile Strength: Yield (Proof), MPa 480
420

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 46
120
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
30
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
90

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.8
8.1
Embodied Energy, MJ/kg 24
150
Embodied Water, L/kg 51
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
22
Resilience: Unit (Modulus of Resilience), kJ/m3 620
1250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 22
44
Strength to Weight: Bending, points 21
45
Thermal Diffusivity, mm2/s 12
46
Thermal Shock Resistance, points 18
21

Alloy Composition

Aluminum (Al), % 0 to 0.015
93.7 to 95.5
Carbon (C), % 0 to 0.22
0
Chromium (Cr), % 0 to 0.35
0
Copper (Cu), % 0 to 0.6
4.0 to 5.0
Iron (Fe), % 95 to 99.05
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 1.0 to 1.8
0.2 to 0.4
Molybdenum (Mo), % 0 to 0.13
0
Nickel (Ni), % 0 to 0.85
0
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.027
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.65
0 to 0.050
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0 to 0.060
0.15 to 0.35
Vanadium (V), % 0 to 0.22
0
Residuals, % 0
0 to 0.1