MakeItFrom.com
Menu (ESC)

EN 1.8915 Steel vs. EN 1.0345 Steel

Both EN 1.8915 steel and EN 1.0345 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 99% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.8915 steel and the bottom bar is EN 1.0345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
120
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
27
Fatigue Strength, MPa 340
170
Impact Strength: V-Notched Charpy, J 79
44
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 400
270
Tensile Strength: Ultimate (UTS), MPa 640
420
Tensile Strength: Yield (Proof), MPa 490
230

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
2.1
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.5
Embodied Energy, MJ/kg 24
19
Embodied Water, L/kg 51
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
96
Resilience: Unit (Modulus of Resilience), kJ/m3 640
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
15
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0.020 to 0.024
Carbon (C), % 0 to 0.2
0 to 0.16
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.7
0 to 0.3
Iron (Fe), % 95.2 to 98.9
97.2 to 99.38
Manganese (Mn), % 1.1 to 1.7
0.6 to 1.2
Molybdenum (Mo), % 0 to 0.1
0 to 0.080
Nickel (Ni), % 0 to 0.8
0 to 0.3
Niobium (Nb), % 0 to 0.050
0 to 0.020
Nitrogen (N), % 0 to 0.025
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.35
Sulfur (S), % 0 to 0.0080
0 to 0.010
Titanium (Ti), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0 to 0.2
0 to 0.020