MakeItFrom.com
Menu (ESC)

EN 1.8935 Steel vs. ACI-ASTM CG8M Steel

Both EN 1.8935 steel and ACI-ASTM CG8M steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8935 steel and the bottom bar is ACI-ASTM CG8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
45
Fatigue Strength, MPa 330
280
Impact Strength: V-Notched Charpy, J 71
110
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Tensile Strength: Ultimate (UTS), MPa 640
550
Tensile Strength: Yield (Proof), MPa 490
300

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1020
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
20
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
4.1
Embodied Energy, MJ/kg 24
56
Embodied Water, L/kg 51
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 640
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 12
4.3
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0
Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 0 to 0.3
18 to 21
Copper (Cu), % 0 to 0.7
0
Iron (Fe), % 95.2 to 98.9
58.8 to 70
Manganese (Mn), % 1.1 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.1
3.0 to 4.0
Nickel (Ni), % 0 to 0.8
9.0 to 13
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.5
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.2
0