MakeItFrom.com
Menu (ESC)

EN 1.8935 Steel vs. EN 1.0258 Steel

Both EN 1.8935 steel and EN 1.0258 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 99% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.8935 steel and the bottom bar is EN 1.0258 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
23
Fatigue Strength, MPa 330
200
Impact Strength: V-Notched Charpy, J 71
38
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 400
310
Tensile Strength: Ultimate (UTS), MPa 640
490
Tensile Strength: Yield (Proof), MPa 490
290

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 46
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
2.1
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.5
Embodied Energy, MJ/kg 24
19
Embodied Water, L/kg 51
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
95
Resilience: Unit (Modulus of Resilience), kJ/m3 640
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 0.020 to 0.050
0
Carbon (C), % 0 to 0.2
0 to 0.2
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.7
0 to 0.3
Iron (Fe), % 95.2 to 98.9
96.9 to 100
Manganese (Mn), % 1.1 to 1.7
0 to 1.4
Molybdenum (Mo), % 0 to 0.1
0 to 0.080
Nickel (Ni), % 0 to 0.8
0 to 0.3
Niobium (Nb), % 0 to 0.050
0 to 0.010
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0 to 0.030
0 to 0.040
Vanadium (V), % 0 to 0.2
0 to 0.020