MakeItFrom.com
Menu (ESC)

EN 1.8936 Steel vs. C43500 Brass

EN 1.8936 steel belongs to the iron alloys classification, while C43500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8936 steel and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
8.5 to 46
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
42
Shear Strength, MPa 370
220 to 310
Tensile Strength: Ultimate (UTS), MPa 600
320 to 530
Tensile Strength: Yield (Proof), MPa 370
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 410
160
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
970
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
120
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
28
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
30

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
28
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.7
2.7
Embodied Energy, MJ/kg 24
45
Embodied Water, L/kg 50
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 370
65 to 1040
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 21
10 to 17
Strength to Weight: Bending, points 20
12 to 17
Thermal Diffusivity, mm2/s 11
37
Thermal Shock Resistance, points 17
11 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.060
0
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.2
79 to 83
Iron (Fe), % 95.5 to 98.9
0 to 0.050
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 1.0 to 1.7
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.1 to 0.6
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.6 to 1.2
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0
15.4 to 20.4
Residuals, % 0
0 to 0.3