MakeItFrom.com
Menu (ESC)

EN 1.8946 Steel vs. EN 1.0034 Steel

Both EN 1.8946 steel and EN 1.0034 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8946 steel and the bottom bar is EN 1.0034 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
97 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
9.0 to 32
Fatigue Strength, MPa 260
140 to 170
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 350
220 to 230
Tensile Strength: Ultimate (UTS), MPa 580
340 to 380
Tensile Strength: Yield (Proof), MPa 390
180 to 280

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 43
53
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.7
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 23
18
Embodied Water, L/kg 51
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 410
84 to 210
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
12 to 13
Strength to Weight: Bending, points 20
14 to 15
Thermal Diffusivity, mm2/s 12
14
Thermal Shock Resistance, points 17
11 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Carbon (C), % 0 to 0.15
0 to 0.15
Chromium (Cr), % 0.25 to 1.4
0
Copper (Cu), % 0.2 to 0.6
0
Iron (Fe), % 94.8 to 99.5
98.7 to 100
Manganese (Mn), % 0 to 1.1
0 to 0.7
Nickel (Ni), % 0 to 0.7
0
Niobium (Nb), % 0 to 0.065
0
Phosphorus (P), % 0.050 to 0.16
0 to 0.045
Silicon (Si), % 0 to 0.8
0 to 0.35
Sulfur (S), % 0 to 0.035
0 to 0.045
Titanium (Ti), % 0 to 0.12
0
Vanadium (V), % 0 to 0.14
0