MakeItFrom.com
Menu (ESC)

EN 2.4665 Nickel vs. AISI 434 Stainless Steel

EN 2.4665 nickel belongs to the nickel alloys classification, while AISI 434 stainless steel belongs to the iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4665 nickel and the bottom bar is AISI 434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
24
Fatigue Strength, MPa 220
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
78
Shear Strength, MPa 520
330
Tensile Strength: Ultimate (UTS), MPa 790
520
Tensile Strength: Yield (Proof), MPa 300
320

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 990
880
Melting Completion (Liquidus), °C 1460
1510
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 12
25
Thermal Expansion, µm/m-K 14
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 9.2
2.4
Embodied Energy, MJ/kg 130
33
Embodied Water, L/kg 270
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 26
19
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 3.2
6.7
Thermal Shock Resistance, points 20
19

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.050 to 0.15
0 to 0.12
Chromium (Cr), % 20.5 to 23
16 to 18
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 17 to 20
78.6 to 83.3
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0.75 to 1.3
Nickel (Ni), % 40.3 to 53.8
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Tungsten (W), % 0.2 to 1.0
0