MakeItFrom.com
Menu (ESC)

EN 2.4665 Nickel vs. S44536 Stainless Steel

EN 2.4665 nickel belongs to the nickel alloys classification, while S44536 stainless steel belongs to the iron alloys. They have 41% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4665 nickel and the bottom bar is S44536 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
22
Fatigue Strength, MPa 220
190
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 81
78
Shear Strength, MPa 520
290
Tensile Strength: Ultimate (UTS), MPa 790
460
Tensile Strength: Yield (Proof), MPa 300
280

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 990
990
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 12
21
Thermal Expansion, µm/m-K 14
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 55
13
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 9.2
2.8
Embodied Energy, MJ/kg 130
41
Embodied Water, L/kg 270
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
89
Resilience: Unit (Modulus of Resilience), kJ/m3 220
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 26
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 3.2
5.6
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.050 to 0.15
0 to 0.015
Chromium (Cr), % 20.5 to 23
20 to 23
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 17 to 20
72.8 to 80
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 40.3 to 53.8
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.8
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.8
Tungsten (W), % 0.2 to 1.0
0