MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. AWS BNi-3

Both EN 2.4816 nickel and AWS BNi-3 are nickel alloys. They have 77% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is AWS BNi-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
170
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
66
Tensile Strength: Ultimate (UTS), MPa 700
430

Thermal Properties

Latent Heat of Fusion, J/g 310
350
Melting Completion (Liquidus), °C 1370
1040
Melting Onset (Solidus), °C 1320
980
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 55
60
Density, g/cm3 8.5
8.3
Embodied Carbon, kg CO2/kg material 9.0
9.9
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 260
220

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 23
22
Strength to Weight: Axial, points 23
14
Strength to Weight: Bending, points 21
15
Thermal Shock Resistance, points 20
17

Alloy Composition

Aluminum (Al), % 0 to 0.3
0 to 0.050
Boron (B), % 0
2.8 to 3.5
Carbon (C), % 0.050 to 0.1
0 to 0.060
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 6.0 to 10
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 72 to 80
90.1 to 93.3
Phosphorus (P), % 0 to 0.020
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.5
4.0 to 5.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0 to 0.3
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5