MakeItFrom.com
Menu (ESC)

EN 2.4816 Nickel vs. C61400 Bronze

EN 2.4816 nickel belongs to the nickel alloys classification, while C61400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4816 nickel and the bottom bar is C61400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 34
34 to 40
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 470
370 to 380
Tensile Strength: Ultimate (UTS), MPa 700
540 to 570
Tensile Strength: Yield (Proof), MPa 270
220 to 270

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1150
220
Melting Completion (Liquidus), °C 1370
1050
Melting Onset (Solidus), °C 1320
1040
Specific Heat Capacity, J/kg-K 460
420
Thermal Conductivity, W/m-K 15
67
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
14
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
15

Otherwise Unclassified Properties

Base Metal Price, % relative 55
28
Density, g/cm3 8.5
8.5
Embodied Carbon, kg CO2/kg material 9.0
3.0
Embodied Energy, MJ/kg 130
48
Embodied Water, L/kg 260
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
160 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 190
210 to 310
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 23
18 to 19
Strength to Weight: Bending, points 21
17 to 18
Thermal Diffusivity, mm2/s 3.8
19
Thermal Shock Resistance, points 20
18 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.3
6.0 to 8.0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.5
86 to 92.5
Iron (Fe), % 6.0 to 10
1.5 to 3.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 72 to 80
0
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.3
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5