MakeItFrom.com
Menu (ESC)

EN 2.4878 Nickel vs. C90400 Bronze

EN 2.4878 nickel belongs to the nickel alloys classification, while C90400 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4878 nickel and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 13 to 17
24
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 1210 to 1250
310
Tensile Strength: Yield (Proof), MPa 740 to 780
180

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 1030
170
Melting Completion (Liquidus), °C 1370
990
Melting Onset (Solidus), °C 1320
850
Specific Heat Capacity, J/kg-K 460
370
Thermal Conductivity, W/m-K 11
75
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 80
34
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 10
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 370
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 180
65
Resilience: Unit (Modulus of Resilience), kJ/m3 1370 to 1540
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 41 to 42
10
Strength to Weight: Bending, points 31
12
Thermal Diffusivity, mm2/s 2.8
23
Thermal Shock Resistance, points 37 to 39
11

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0.010 to 0.015
0 to 0.1
Carbon (C), % 0.030 to 0.070
0
Chromium (Cr), % 23 to 25
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
86 to 89
Iron (Fe), % 0 to 1.0
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 0.5
0 to 0.010
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 43.6 to 52.2
0 to 1.0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.010
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.0070
0.1 to 0.65
Tantalum (Ta), % 0 to 0.050
0
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 2.8 to 3.2
0
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0.030 to 0.070
0 to 0.1
Residuals, % 0
0 to 0.7