MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. S46910 Stainless Steel

EN AC-41000 aluminum belongs to the aluminum alloys classification, while S46910 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is S46910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 57 to 97
270 to 630
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 4.5
2.2 to 11
Fatigue Strength, MPa 58 to 71
250 to 1020
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 170 to 280
680 to 2470
Tensile Strength: Yield (Proof), MPa 80 to 210
450 to 2290

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
4.1
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1160
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
48 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
510 to 4780
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 18 to 29
24 to 86
Strength to Weight: Bending, points 26 to 35
22 to 51
Thermal Shock Resistance, points 7.8 to 13
23 to 84

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0.15 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 0 to 0.1
1.5 to 3.5
Iron (Fe), % 0 to 0.6
65 to 76
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0 to 0.050
8.0 to 10
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.6 to 2.4
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0.5 to 1.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants