MakeItFrom.com
Menu (ESC)

EN AC-42000 Aluminum vs. Grade 5 Titanium

EN AC-42000 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN AC-42000 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.1 to 2.4
8.6 to 11
Fatigue Strength, MPa 67 to 76
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 170 to 270
1000 to 1190
Tensile Strength: Yield (Proof), MPa 95 to 230
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 500
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 610
1610
Melting Onset (Solidus), °C 600
1650
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 160
6.8
Thermal Expansion, µm/m-K 22
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
4.4
Embodied Carbon, kg CO2/kg material 8.0
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.7
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 370
3980 to 5880
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
35
Strength to Weight: Axial, points 18 to 28
62 to 75
Strength to Weight: Bending, points 26 to 35
50 to 56
Thermal Diffusivity, mm2/s 66
2.7
Thermal Shock Resistance, points 7.9 to 12
76 to 91

Alloy Composition

Aluminum (Al), % 89.9 to 93.3
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.55
0 to 0.4
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.2 to 0.65
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.15
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 6.5 to 7.5
0
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0
0 to 0.4