MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. Monel 400

EN AC-42100 aluminum belongs to the aluminum alloys classification, while Monel 400 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is Monel 400.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
160
Elongation at Break, % 3.4 to 9.0
20 to 40
Fatigue Strength, MPa 76 to 82
230 to 290
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
62
Tensile Strength: Ultimate (UTS), MPa 280 to 290
540 to 780
Tensile Strength: Yield (Proof), MPa 210 to 230
210 to 590

Thermal Properties

Latent Heat of Fusion, J/g 500
270
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 610
1350
Melting Onset (Solidus), °C 600
1300
Specific Heat Capacity, J/kg-K 910
430
Thermal Conductivity, W/m-K 150
23
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 8.0
7.9
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1110
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
140 to 1080
Stiffness to Weight: Axial, points 15
10
Stiffness to Weight: Bending, points 53
21
Strength to Weight: Axial, points 30 to 31
17 to 25
Strength to Weight: Bending, points 37 to 38
17 to 21
Thermal Diffusivity, mm2/s 66
6.1
Thermal Shock Resistance, points 13
17 to 25

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
28 to 34
Iron (Fe), % 0 to 0.19
0 to 2.5
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
63 to 72
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.024
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0